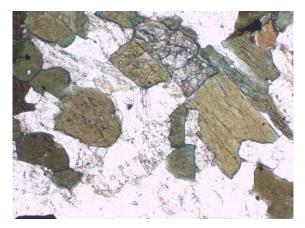
Diploma of Advanced Concrete Technology

 Geology aggregates, Classification and Prospecting

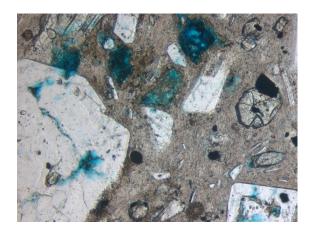
- Type Igneous
- Name: Basalt
- Rock cycle extrusive
- Grainsize: Fine
- SG 2.5-2.9
- Occurrence: east and west seaboard
- Intraplate, back arc
- Deleterious minerals
 - Montmorillanite
 - Calcite
 - Volcanic glass
 - Zeolite
 - Iddingsite
 - Chlorite

- Type Igneous
- Name: Dolerite
- Rock cycle Sill/intrusive
- Grainsize: Fine
- SG 2.8-2.9
- Occurrence: mainly Tasmania
- Intraplate, in sills
- Deleterious minerals
 - Montmorillanite
 - Calcite
 - Chlorite
 - Zeolite

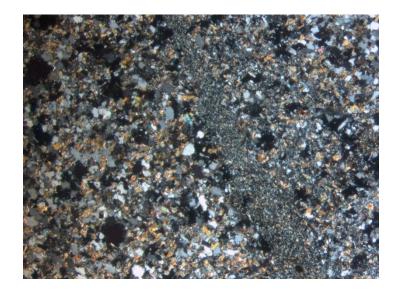

- Type Igneous
- Name: Latite
- Rock cycle extrusive/sill
- Grainsize: Fine
- SG 2.5-2.7
- Occurrence: Sydney basin
- Intraplate
- Deleterious minerals
 - Calcite
 - Zeolite
 - Chlorite
 - Sericite
 - Kaolinite

- Type Igneous
- Name: Granite
- Rock cycle intrusive
- Grainsize: medium to coarse
- SG 2.67
- Occurrence: widespread
- Subduction zones
- Deleterious minerals
 - Calcite
 - Zeolite
 - Strained quartz
 - Biotite (affects concrete strength)
 - Kaolinite

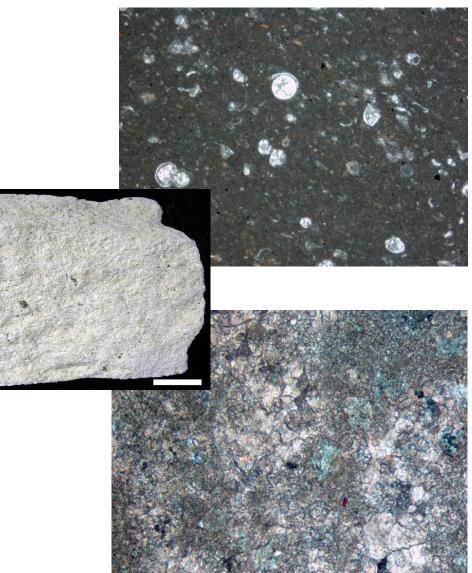
- Type Igneous
- Name: Rhyolite
- Rock cycle extrusive
- Grainsize: Fine
- SG 2.5-2.67
- Occurrence: east and west se
- Intraplate
- Deleterious minerals
 - Calcite
 - Epidote
 - Zeolite
 - Sericite
 - Glass shards
 - Strained quartz/Tridymite
 - Kaolinite



- Type Igneous
- Name: Andesite
- Rock cycle extrusive
- Grainsize: Fine-medium
- SG 2.5-2.67
- Occurrence: east and west seaboard
- Intraplate
- Deleterious minerals
 - Calcite
 - Epidote
 - Zeolite
 - Sericite
 - Kaolinite

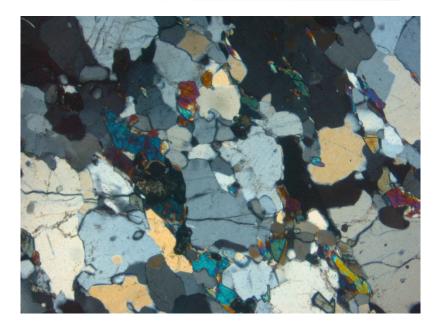

- Type sedimentary
- Name: chert
- Rock cycle: chemical deposition
- Grainsize: Very Fine
- SG 2.5-2.67
- Occurrence: east and west seaboard
- Lagoonal deposition
- Deleterious minerals
 - Zeolite
 - Sericite
 - Fine amorphous silica

- Type sedimentary
- Name: sandstone (arenite)
- Rock cycle extrusive
- Grainsize: Fine-medium
- SG 2.5-2.67
- Occurrence: east and west seaboard
- Sedimentary basins and near shore
- Deleterious minerals
 - Calcite
 - Zeolite
 - Sericite
 - Kaolinite

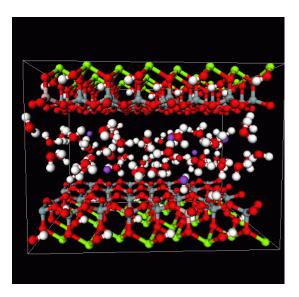


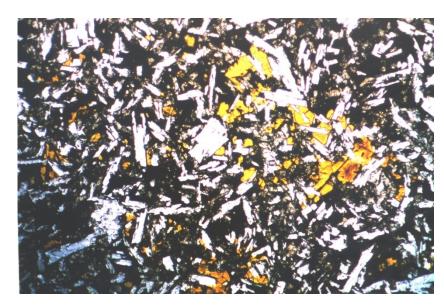
- Type Sedimentary
- Name: Greywacke
- Rock cycle:
- Grainsize: Fine-medium
- SG 2.5-2.67
- Occurrence: east seaboard
- Deep water deposition
- Deleterious minerals
 - Calcite
 - Zeolite
 - Sericite
 - Kaolinite

- Type Sedimentary
- Name: Limestone/Dolomite
- Rock cycle: Chemical biological deposition
- Grainsize: Fine-medium
- SG 2.72
- Occurrence: Australia Wide
- Deep water deposition
- Deleterious minerals
 - Calcite
 - Zeolite
 - Sericite


- Type Metamorphic
- Name: Hornfels
- Rock cycle changed sediments
- Grainsize: Fine-medium
- SG 2.5-2.67
- Occurrence: east and west seaboard
- Contact with granite
- Deleterious minerals
 - Calcite
 - Sericite
 - chlorite

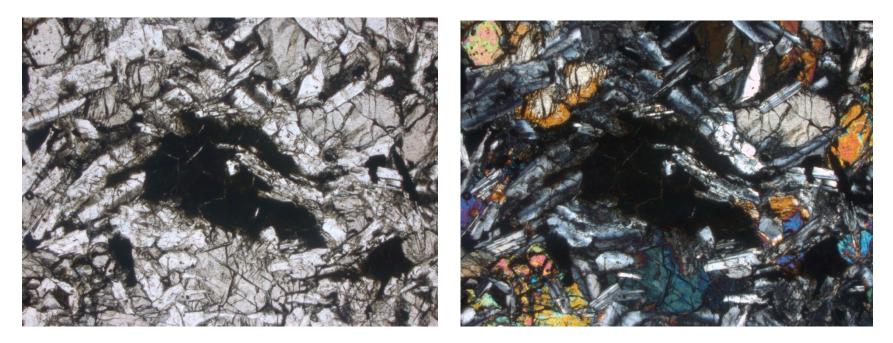
- Type Metamorphic
- Name: Gneiss
- Rock cycle crustal melt
- Grainsize: Fine-medium sometimes banded
- SG 2.5-2.67
- Occurrence: east and west seaboard
- Subduction zone regional metamorphism
- Deleterious minerals
 - Calcite
 - Epidote
 - Sericite
 - Chlorite





Section 3 – Deleterious minerals Montmorillanite

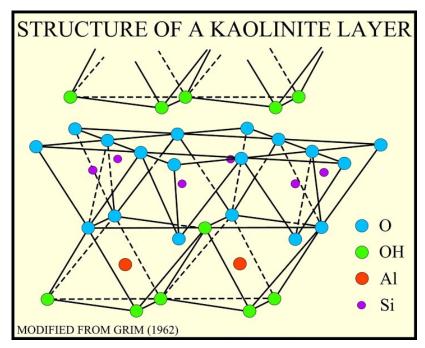
•Formula (0.5Ca,Na)0.7(AI,Mg,Fe)₄[(si,AI)₈O₂₀](OH)₄.nH₂O


- •Layered mineral sheets of AI between SiO₂ tetrahedra
- •Sodium types absorb more water
- Main alteration mineral in basalts

Section 3 – Deleterious minerals Epidote

- Formula Ca, Fe³⁺Al₂O.OH[Si₂O₇][SiO₄]
- Main alteration mineral in basic igneous rocks and retrograde metamorphism and hydrothermal alteration

Section 3 – Deleterious minerals Chlorite

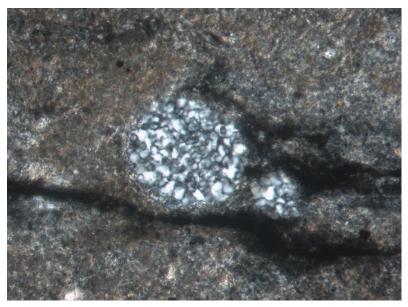

- •Formula (Mg,AI,Fe)₁₂ [(Si,AI)₈O₂₀](OH)₁₆
- •Layered mineral sheets.
- Does not absorb water
- •Alteration mineral in igneous and metamorphic rocks

Section 3 – Deleterious minerals Kaolinite

- •Formula Al4 [(Si₄O₁₀](OH)₈
- •Layered mineral sheets.
- Does not absorb water
- •Hydrothermal alteration mineral in high silica igneous rocks

Section 3 – Deleterious minerals Calcite

•Formula CaCO₃


•Hydrothermal alteration mineral in igneous rocks

Section 3 – Deleterious minerals Silica

- •Formula SiO₂
- •Amorphous silica if present is problem
- •Strained quartz may be contributor

